RAMSEY-TYPE NUMBERS FOR DEGREE SEQUENCES

ARTHUR BUSCH
UNIVERSITY OF DAYTON
DAYTON, OH 45469

MICHAEL FERRARA, MICHAEL JACOBSON
UNIVERSITY OF COLORADO DENVER
DENVER, CO 80217

STEPHEN HARTKE
UNIVERSITY OF NEBRASKA-LINCOLN
LINCOLN, NE 68583

Abstract. A (finite) sequence of non-negative integers is graphic if it is the
degree sequence of some simple graph G. In this paper, we introduce a Ramsey-
type parameter for degree sequences. Given graphs G_1 and G_2, we define the
potential-Ramsey number $r_{pot}(G_1, G_2)$, as the smallest integer n such that for
every n-term graphic sequence π, there is some graph G with degree sequence π
with $G_1 \subseteq G$ or with $G_2 \subseteq G$. Bounded above by the well-studied classical
Ramsey number, we consider situations where equality holds, and give exact
values for $r_{pot}(K_n, K_t), r_{pot}(C_n, K_t), r_{pot}(P_n, K_t)$.

1. Introduction and Preliminaries

If u and v are adjacent vertices in G, we will write $u \sim v$ and say also that
uv is an edge of G. For a subgraph H and a vertex v in G, $N_H(v)$ denotes those
neighbors of v lying in H and we let $d_H(v) = |N_H(v)|$. Similarly, given vertices u
and v in H, we let $dist_H(u, v)$ denote the distance from u to v in H.

A nonegative integer sequence (d_1, \ldots, d_n) is graphic if it is the degree sequence
of some (simple) graph G. In that case, we say that G realizes π or is a realization
of π, and we write $\pi = \pi(G)$ or $G = G(\pi)$. A graphic sequence π is unigraphic
if all realizations of π are isomorphic, and we denote $\pi\overrightarrow{=} = (d_1, \ldots, d_n) = (n - 1 -
d_1, \ldots, n - 1 - d_n)$ and when convenient we will reorder the terms in nonincreasing
order. For a fixed graph H, a graphic sequence π is potentially H-graphic if there
is some realization of π that contains H as a subgraph.

Given graphs G_1 and G_2, the classical Ramsey number $r(G_1, G_2)$ is the minimum
integer n such that for any graph G of order n, either $G_1 \subseteq G$ or $G_2 \subseteq G$.
Exact values of $r(G_1, G_2)$ are known for very few collections of graphs - for a thorough
dynamic survey see [15]. As the classical Ramsey problem has proved to be difficult,
a number of variants and relaxations, many of which are still quite challenging, have
arisen and been the subject of a great deal of study (for a small sample of recent
results, see [1, 3, 8, 10, 11]).
In this paper, we introduce a Ramsey-type parameter for degree sequences. Given a graphic sequence \(\pi \), we will write \(\pi \rightarrow (G_1, G_2) \) if either \(\pi \) is potentially \(G_1 \)-graphic or \(\pi \) is potentially \(G_2 \)-graphic. The potential-Ramsey number, \(r_{\text{pot}}(G_1, G_2) \), is the smallest integer \(n \) such that for every \(n \)-term graphic sequence \(\pi \), \(\pi \rightarrow (G_1, G_2) \). Alternatively, \(r_{\text{pot}}(G_1, G_2) \), is the smallest integer \(n \) such that for every \(n \)-term graphic sequence \(\pi \), there is some graph \(G = G(\pi) \) with \(G_1 \subseteq G \) or with \(G_2 \subseteq \overline{G} \). In the sections that follow, we will give several bounds on \(r_{\text{pot}}(G_1, G_2) \) and also determine exact values for a number of families of graphs.

2. Bounds

The first claim in this section establishes a concrete link between the classical Ramsey number \(r \) and the Ramsey-potential number \(r_{\text{pot}} \).

Claim 1. For any graphs \(G_1 \) and \(G_2 \),
\[
 r_{\text{pot}}(G_1, G_2) \leq r(G_1, G_2).
\]

As a number of our results will subsequently demonstrate, this bound is often far from optimal. However, there are a number of instances for which the bound is sharp. For instance, in light of [9], we have
\[
 r_{\text{pot}}(K_1, n, K_1, t) = r(K_1, n, K_1, t) = \begin{cases}
 n + t - 1 & n, t \text{ both even}, \\
 n + t & \text{otherwise}.
\end{cases}
\]

Furthermore, the following lemma demonstrates that in certain cases it is straightforward to determine when equality holds in Claim 1.

Lemma 2.1. Let \(r = r(G_1, G_2) \) and let \(G \) be a graph of order \(r - 1 \) such that \(G_1 \not\subseteq G \) and \(G_2 \not\subseteq \overline{G} \). If \(\pi(G) \) is unigraphic, then \(r(G_1, G_2) = r_{\text{pot}}(G_1, G_2) \).

This allows us to obtain several interesting results. For instance, it is well known that \(r(K_3, K_3) = 6 \) and that \(C_5 \) is the unique graph on five vertices containing no triangle and no independent set of size three. Since \(\pi(C_5) = (2, 2, 2, 2, 2) \) is unigraphic, we conclude that \(r_{\text{pot}}(K_3, K_3) = r(K_3, K_3) = 6 \).

In [7], it was shown that for \(n \geq m \geq 2 \), \(r(P_n, P_m) = n + \left\lfloor \frac{m}{2} \right\rfloor - 1 \), where the lower bound was established via consideration of the graph \(G = K_{n-1} \cup K_{\left\lfloor \frac{m}{2} \right\rfloor} \). As \(\pi(G) \) is unigraphic, we obtain that
\[
 r_{\text{pot}}(P_n, P_m) = r(P_n, P_m) = n + \left\lfloor \frac{m}{2} \right\rfloor - 1.
\]

Anything else where equality holds? Check dynamic survey and literature.

Next we give a bound on \(r_{\text{pot}}(G, K_n) \) for a number of choices of \(G \). The 1-dependence number of a graph \(G \) [6], denoted \(\alpha^{(1)}(G) \), is the maximum order of an induced subgraph \(H \) of \(G \) with \(\Delta(H) \leq 1 \).

Theorem 2.2. Let \(G \) be a graph of order \(n \) with \(\alpha^{(1)}(G) \leq n - 1 \) and \(t \geq 2 \). Then,
\[
 r_{\text{pot}}((G, K_t)) \geq 2t + n - \alpha^{(1)}(G) - 2.
\]
Proof. Let $\ell = n - \alpha^{(1)}(G) - 1$ and consider $\pi = \pi(K_\ell \vee (t - 1)K_2)$, which is unigraphic. The result follows from two simple observations. First, π is uniquely realized by $(K_{2n-2} - (t - 1)K_2) \cup K_2$ which contains no K_t. Secondly, any copy of G lying in the unique realization of π requires at least $\alpha^{(1)}(G) + 1$ vertices from the $t - 1$ independent edges, which is impossible as any such collection of vertices would necessarily induce a subgraph of G with order at least $\alpha^{(1)}(G) + 1$ and maximum degree at most one. \hfill \square

This theorem yields a straightforward corollary, springing from the fact that for any graph G of order n, $\pi((K_{n-1} \cup \overline{K}_{t-2}) \not\rightarrow (G, K_t)$.

Corollary 2.3. Let G be a graph of order n with $\alpha^{(1)}(G) \leq n - 1$ and let $t \geq 2$. Then,

$$r_{pot}((G, K_t)) \geq \max\{2t + n - \alpha^{(1)}(G) - 2, n + t - 2\}.$$

As we will see in the sections that follow, this bound is accurate for $G = K_n, C_n$ and P_n.

3. $r_{pot}(K_n, K_t)$

Few exact values of $r(K_n, K_t)$ are known, and it is one of the foremost problems in combinatorics to determine even $r(K_5, K_5)$. Despite this, in this section, we determine $r_{pot}(K_n, K_t)$ for $n \geq t \geq 2$. The following results will be useful as we proceed.

Theorem 3.1 (R. Luo [12]). Let $\pi = (d_1, \ldots, d_n)$ be a nonincreasing graphic sequence with $d_3 \geq 2$ and $d_n \geq 1$. Then π is potentially C_3-graphic if and only if $\pi \neq (2, 2, 2)$ and $\pi \neq (2, 2, 2, 2)$.

Theorem 3.2 (J-H Yin and J-S Li [16]). Let $\pi = (d_1, \ldots, d_n)$ be a nonincreasing graphic sequence and $k \geq 1$ be an integer.

(a) If $d_k \geq k - 1$ and $d_{2k} \geq k - 2$ then π is potentially K_k-graphic.

(b) If $d_k \geq k - 1$ and $d_i \geq 2(k - 1) - i$ for $1 \leq i \leq k - 1$, then π is potentially K_k-graphic.

We are now ready to prove the main result of this section.

Theorem 3.3. For $n \geq t \geq 3$,

$$r_{pot}(K_n, K_t) = 2n + t - 4$$

except when $n = t = 3$, in which case $r_{pot}(K_3, K_3) = 6$.

Proof. The case where $n = t = 3$ has already been discussed in Section 2, so we may assume that $n \geq 4$ and $t \geq 3$. The fact that $r_{pot}(K_n, K_t) \geq 2n + t - 4$ follows from Theorem 2.2 and/or consideration of $\pi((K_{2n-2} - (n - 1)K_2) \cup \overline{K}_{t-3})$, which is unigraphic.
Therefore, let \(\pi = (d_1, \ldots, d_k) \) be a nonincreasing graphic sequence of length \(k = 2n + t - 4 \) with complementary sequence \(\overline{\pi} = (\overline{d}_1, \ldots, \overline{d}_n) \), which we will also assume to be nonincreasing. If \(d_n < n - 1 \), then
\[
\overline{d}_{k-n+1} = \overline{d}_{n+t-3} \geq n + t - 3 \geq 2t - 3.
\]
As \(t \geq 3 \), this gives that \(\overline{d}_1, \ldots, \overline{d}_t \geq 2t - 3 > t - 1 \), so \(\overline{\pi} \) is potentially \(K_t \)-graphic by part (b) of Theorem 3.2. In a similar manner, if \(d_t < t - 1 \) then \(\pi \) is potentially \(K_n \)-graphic since \(d_n \geq d_{2n-3} \geq 2n - 3 \). Consequently, we may assume that \(d_n \geq n - 1 \) and \(\overline{d}_t \geq t - 1 \). Additionally, if \(t = 3 \), then \(k \geq 7 \) so \(\overline{\pi} \) is potentially \(K_3 \)-graphic by Theorem 3.1. Hence we may assume that \(t \geq 4 \).

Now, if \(d_{2n} \geq n - 2 \), then part (a) of Theorem 3.2 implies that \(\pi \) is potentially \(K_n \)-graphic. Hence, we may assume that \(d_{2n} \leq n - 3 \), so that \(\overline{d}_{k-2n+1} = \overline{d}_{t-3} \geq (k - 1) - (n-3) \geq 2t - 2 \). As we have that \(\overline{d}_{t-1} \geq t - 1 \), we may apply part (b) of Theorem 3.2 unless \(\overline{d}_{t-2} < t \) or, more specifically since \(\overline{d}_t \geq t - 1 \), if \(\overline{d}_{t-2} = t - 1 \). In this case, however, then \(\overline{d}_{t-(t-2)+1} = d_{2n-1} \geq 2n - 4 \), so we can apply part (b) of Theorem 3.2 to \(\pi \) provided \(d_1 \geq 2n - 3 \). We complete the proof by observing that if this were not the case, we would have \(d_1 = 2n - 4 \) and thus \(\overline{d}_k = k - 1 - (2n - 4) = t - 1 \).

As \(t \geq 4 \), \(k \geq 2t \), \(\overline{\pi} \) is potentially \(K_t \)-graphic by part (a) of Theorem 3.2. \(\square \)

4. \(r_{\text{pot}}(C_n, K_t) \)

Exact values of \(r(C_n, K_t) \) are known for all \(t \leq 7 \), and the conjecture that \(r(C_n, K_t) = (n - 1)(t - 1) + 1 \) for \(n \geq t \geq 3 \) has been outstanding since 1976 [4, 5]; a recent proof for \(n \geq 4m + 2, m \geq 3 \) is given in [13]. In contrast, in this section, we show \(r_{\text{pot}}(C_n, K_t) \) is linear in \(n \) and \(t \) for all \(n \geq 3, t \geq 2 \).

Theorem 4.1. For \(t \geq 2 \) and \(n \geq 3 \) with \(t \leq \left\lceil \frac{2n}{3} \right\rceil \), \(r_{\text{pot}}(C_n, K_t) = n + t - 2 \)

Proof. The fact that \(r_{\text{pot}}(C_n, K_t) \geq n + t - 2 \) follows from consideration of \(\pi(K_{n-1} \cup K_{t-2}) \), which is unigraphic.

To show the reverse inequality, let \(\pi = (d_1, \ldots, d_k) \) be a graphic sequence with \(k = n + t - 2 \). If \(t = 2 \), the result is immediate, so we assume next that \(t = 3 \) and \(n = 5 \) and order \(\overline{\pi} = (\overline{d}_1, \overline{d}_2, \overline{d}_3, \overline{d}_4, \overline{d}_5, \overline{d}_6) \) to be nonincreasing. By Theorem 3.1, if \(\overline{d}_3 \geq 2 \) then \(\overline{\pi} \) is potentially \(K_3 \)-graphic. We leave it to the reader to check that if \(\overline{\pi} \) is a nonincreasing sequence with six terms that does not satisfy this condition, then \(\pi \) must be potentially \(C_5 \)-graphic.

Hence, we may assume that \(n \geq 6, t \geq 3 \) and \(t \leq \left\lceil \frac{2n}{3} \right\rceil \). If no realization of \(\pi \) contains a cycle, then every realization of \(\pi \) is bipartite, and hence has an independent set of size at least \(\left\lceil \frac{n + t - 2}{2} \right\rceil \). Thus, in the complement of \(G \) we have either a clique on at least \(t \) vertices, or \(\frac{n - t + 2}{2} \leq t - 1 \) which implies that \(t \geq n \). Thus, we can assume that some realization of \(\pi \) contains a cycle. Obviously, if \(G \) contains a cycle of length \(n \), there is nothing to prove, so we assume that no cycle in any realization of \(\pi \) has length \(n \). We proceed by considering the following cases.

Case 1: Some realization \(G \) of \(\pi \) contains a cycle of length \(n + 1 \).

Let \(C = v_1v_2\cdots v_nv_{n+1}v_1 \) be a cycle of length \(n + 1 \) in \(G \) and note that \(v_i \neq v_{i+2} \) for any index \(i \), as no realization of \(\pi \) contains an \(n \)-cycle. Furthermore, if \(v_iv_{i+3} \in E(G) \) for some index \(i \), then we can exchange the edges \(v_iv_{i+3} \)
and $v_i +1v_i +2$ for the nonedges $v_i +1v_i +3$ and $v_i v_i +2$ to obtain a graph G' in which
$v_i v_i +2v_i +3 \cdots v_n +1v_1 \cdots v_i$ is a cycle of length n. Thus, we can assume that for any
i, neither $v_i v_i +2$ nor $v_i v_i +3$ is an edge of G.

Consider a vertex $x \in V(G) - C$ with $d = d_C(x)$ maximum. If $d = 0$, we
have either $d_G(x) = 0$ for all $x \in V(G) - C$, or we have $x, y \in V(G) - C$ with
$xy \in E(G)$. In the latter case, we can exchange the edges $v_1 v_2, v_2 v_3$ and xy with
the nonedges $v_1 x, v_3 y$ and $v_1 v_3$ to construct a realization of π containing the n-
cycle $v_1 v_3 v_4 \cdots v_n +1 v_1$. If, instead, $d_G(x) = 0$ for each vertex in $V(G) - C$, then
$V(G) - C$ along with v_1, v_3 and v_5 form an independent set of size t unless $v_1 v_5$
is in $E(G)$. Then, however, we can exchange the edges $v_1 v_5, v_2 v_3$ and $v_3 v_4$ for the
nonedges $v_1 v_3, v_3 v_5$ and $v_2 v_4$ to construct a realization of π containing the n-
cycle $v_1 v_2 v_3 v_5 \cdots v_n +1$.

Thus, we can assume that there is some vertex $x \in V(G) - C$ such that $v_i \in N(x)$
for some index i. If $xv_i +1 \in E(G)$, then G contains a cycle of length n, so there
exists an index j such that $v_j \in N(x)$ and $v_{j +1} \notin N(x)$. Now, replacing the edges
xv_j and $v_{j +1}v_{j +2}$ with the nonedges $xv_{j +1}$ and $v_{j +1}v_{j +2}$ gives a realization G' of π
in which $v_j v_{j +2} v_{j +3} \cdots v_n +1 v_1 v_2 \cdots v_j$ is a cycle of length n.

Case 2: Some realization G of π contains a cycle of length $n + 2$.

Let $C = v_1 v_2 \cdots v_n v_{n +2} v_1$ be a cycle of length $n + 2$ in G, and note that Case 1
and the assumption that no realization of G contains an n-cycle, neither $v_i v_{i +2}$ nor
$v_i v_{i +3}$ are edges of G for any index i. If C is not an induced cycle, choose a chord
$v_i v_j \in E(G)$ so that $dist_C(v_j, v_i) > 3$ is minimum. Next, we note that by replacing
the edges $v_i v_{i +1}, v_i v_{i +1}$ and $v_{i +2} v_{i +3}$ with the nonedges $v_i v_{i +2}, v_i v_{i +3}$ and $v_{i +1} v_{j +1}$ we
obtain a realization of π in which $v_i v_{i +3} v_{i +4} \cdots v_n +2 v_1 v_2 \cdots v_i$ is a cycle of length
n.

Therefore, we can assume that C is an induced $C_{n +2}$ in G. Suppose then that
there is a vertex x in $V(G) - C$ such that xv_i is an edge of G for some i. Then
either $v_1 v_2 \cdots v_i x v_{i +3} v_{i +4} \cdots v_n +2 v_1$ is a cycle of length $n + 1$, or we can choose an
index j such that $xv_j \in E(G)$ but $xv_{j +1} \notin E(G)$. Then, by exchanging the edges
$v_j x$ and $v_{j +1} v_{j +2}$ with the nonedges $v_j v_{j +2}$ and $xv_{j +1}$ we obtain a realization of
π which contains a cycle of length $n + 1$. Furthermore, if there exists any edge
xy with $x, y \notin \{v_1, \ldots, v_n\}$, then replacing the edges $v_1 v_2, v_2 v_3$ and xy with
the edges $v_1 v_3, v_3 x$ and $v_2 y$ yields a realization of π where $v_1 v_3 v_4 \cdots v_{n +2} v_1$ is a cycle
of length $n + 1$. Thus G is isomorphic to $C_{n +2} \cup K_{t - 4}$, and as $n + 2 \geq 8$, $\alpha(G) \geq t$.

Case 3: Some realization G of π contains a cycle of length $m > n + 2$.

Choose a realization G containing a cycle $v_1 v_2 \cdots v_m v_1$ with $m > n + 2$ maximum.
If $v_n \sim v_1$, then the vertices v_1, v_2, \ldots, v_n obviously give the desired subgraph
isomorphic to C_n. Similarly, since we can assume G contains no cycle of length $n + 2,
\ v_{n +1} \not\sim v_m$, as this edge would complete a cycle of length $n + 2$. Thus, replacing
the edges $v_m v_1$ and $v_n v_{n +1}$ with the non-edges $v_n v_1$ and $v_{n +1}v_m$ gives a graph G'
with degree sequence π which contains C_n.

Case 4: Every realization of π has circumference at most $n - 1$.

As above, let G be a realization of π containing a longest cycle $C = v_1v_2 \ldots v_m$ with $m \leq n - 1$ and suppose that G has the maximum circumference amongst all realizations of π. Let H be the subgraph of G induced by $V(G) - V(C)$.

Claim 1. H is acyclic.

Assume otherwise, and let $x_1x_2 \ldots x_px_1$ be a cycle in H. Then, if $v_ix_j \in E(G)$, it follows that neither $v_{i+1}x_j \in E(G)$ nor $v_{i+2}x_{j+1} \in E(G)$. Otherwise, $v_1v_2 \ldots v_ix_jv_{i+1}v_{i+2} \ldots v_mv_1$ or $v_1v_2 \ldots v_ix_{j+1}v_{i+2} \ldots v_mv_1$ is a cycle of length greater than m in G, a contradiction. Thus we conclude, without loss of generality, that $v_1 \neq x_2$ and $v_2 \neq x_1$, and by replacing the edges v_1v_2 and x_1x_2 with v_1x_2 and v_2x_1, we obtain a realization of π with a cycle $v_1x_2x_3 \ldots x_{p-2}x_{p}v_2v_3 \ldots v_mv_1$ of length $m + p$, a contradiction which establishes that H is acyclic.

Claim 2. Either $\Delta(H) \leq 1$ or the only non-trivial component of H is a star.

Assume first that there exist vertices x and y in H such that $d_H(x) \geq 2$ and $d_H(y) \geq 2$. Clearly, we can choose x and y so that $xy \in E(G)$. Since H is acyclic, then for any vertices $x' \in N_H(x) - \{y\}$ and $y' \in N_H(y) - \{x\}$ we have $x' \neq y'$ and $x' \neq x$. As the circumference of G is m, there exists an index i such that $v_ix \notin E(G)$ and $v_{i+1}y \notin E(G)$. By replacing xx', yy' and v_iv_{i+1} with $v_ix, v_{i+1}y$ and $x'y'$, we obtain a graph G' realizing π containing the $(m + 2)$-cycle $v_1xx'yv_{i+1} \ldots v_mv_1$, a contradiction. Hence H has at most one vertex of degree at least two.

Assume then that $\Delta(H) > 1$, and that H has at least two non-trivial components. Choose $x \in V(H)$ with $d_H(x) > 1$, and choose vertices x' and x'' in $N(x)$, and edge yy' in a component of H different from the component containing x. We may assume, without loss of generality, that $v_1 \neq x$. If, in addition, $v_2 \neq x$ then $v_1v_2xx''xv_1$ alternates between edges and non-edges in G and can be used to obtain a realization of π containing a cycle of length $m + 1 > m$, a contradiction. A similar argument holds if $v_m \neq x$ so both v_2x and v_mx are edges in G. Now, if $v_2y \notin E(G)$, then replacing edges xx', yy' and v_1v_2 with v_1x, v_2y and $y'x'$ yields a realization of π in which $v_1v_2 \cdots v_mv_1$ is a cycle of length $m + 1$, which contradicts the maximality of m. We can therefore assume $v_2y \in E(G)$, and by an identical argument, that $v_my' \in E(G)$. But then $v_2 \cdots v_ny'yv_2$ is a cycle of length $m + 1$ in G. This last contradiction establishes the claim.

Claim 3. If the only non-trivial component of H is a star, then $\pi \to (C_n, K_t)$.

Let x be the unique vertex in $V(H)$ with $d_H(x) > 1$. Clearly, by the maximality of m, $v_ix \in E(G)$ implies that $v_{i+1} \neq x$ for every i, and the argument in Claim 2 establishes that we could construct a larger cycle if x has two consecutive non-neighbors on C. We conclude that m is even and, without loss of generality, $x \sim v_1$ if and only if i is even. Next, observe that if we can choose an odd index i such that $v_i \sim y$ for some $y \in V(H) - x$, then either $v_1v_2 \cdots v_iyyv_{i+1}v_{i+2} \cdots v_mv_1$ is a cycle of length $m + 1$ in G or, $xy \notin E(G)$. In the latter case, we can exchange the edges v_2y and xx' with the nonedges v_ix and $x'y$ for any $x' \in N_H(x)$ to obtain a realization of π in which $v_1v_2 \cdots v_ixv_{i+1}v_{i+2} \cdots v_mv_1$ is a cycle of length $m + 1$. Thus, we conclude that no vertex in $V(H)$ is adjacent to v_1 or v_3. If $v_1 \sim v_3$, we have the cycle $v_1v_3v_2v_4v_5 \cdots v_mv_1$ of length $m + 1$ in G, and if $v_1 \neq v_3$, then $V(H) \cup \{v_1, v_3\} - \{x\}$ is a set of at least $(k - m) + 2 - 1 = (n - m) + t - 1 \geq t$ independent points in G, completing the proof of the claim.
As a result of Claims 1 - 3, we may assume that $\Delta(H) \leq 1$. First, consider the case that $\Delta(H) = 0$. Since $|V(H)| = k - m \geq t - 1$, we can assume equality holds, and conclude that $m = n - 1$. Now, either every vertex v_i is incident with at least one vertex of H, or we can choose a vertex v_j such that $V(H) \cup \{v_j\}$ is an independent set of size at least t. If every v_i has at least one neighbor in $V(H)$, then since $n - 1 > t - 1$, we conclude that some vertex $x \in V(H)$ is adjacent to vertices v_i and v_j with $i < j$, and by the maximality of m, $i < j - 1$. We choose x and v_i v_j so that $j - i > 1$ is as small as possible. We now choose $y \in V(H) \cap N(v_{i+1})$, and observe that $y \not\in x$. The minimality of $j - i$ ensures that $v_j \not\sim y$ and $v_{i+1} \not\sim x$. Thus, the graph obtained by replacing edges $v_{i+1}y$ and v_jx with $v_{i+1}x$ and v_jy is a realization of π which contains a cycle $v_1v_2\cdots v_tv_{i+1}v_i v_1$ of length $m + 1 = n$.

Therefore, it remains to examine the possibility that $\Delta(H) = 1$. First, we assume that H contains exactly two (necessarily adjacent) vertices of degree one, say x and y. We also note that if $v_i x \in E(G)$ for any index i, then the maximality of m guarantees that $v_{i+1} \not\sim x$ and $v_{i+2} \not\sim y$. In this case, by exchanging the edges $v_{i+1}v_{i+2}$ and xy with the nonedges $v_{i+1}x$ and $v_{i+2}y$ we obtain a realization of π with an independent set of size $|V(H)|$. Since H has exactly one edge and order $k - m$, we conclude that either H has t independent points, or m is one of $n - 1$ or $n - 2$. If $m = n - 2$, then $|V(H)| = t$ and we can use an argument identical to the case where $\Delta(H) = 0$ to show that there is some vertex on C that has no neighbor in H, implying the existence of an appropriate independent set. Alternatively, if $m = n - 1$, then $|V(H)| = t - 1$ and we can conclude again that there is some vertex v_j adjacent to no vertex of H. Since $m = n - 1 \geq 5$, we can then choose an index $i \neq j, j - 1$ so that replacing the edges v_iv_{i+1} and xy with $v_i x$ and $v_{i+1}y$ gives realization of π with t independent points (the vertices in $V(H)$ together with the vertex v_j).

Next, assume that H contains $2\ell \geq 4$ vertices of degree one and p isolated vertices and choose $xx', yy' \in E(H)$. If $v_i x \in E(G)$ but $v_i \not\sim x'$, then we can produce a realization of π in which $\Delta(H) = 2$ by replacing edges v_ix, xx' and yy' with the nonedges xy, xy' and v_ix'. The previous claims then imply $\pi \rightarrow (C_n, K_1)$. Furthermore, we note that by replacing the edges xx' and yy' with the edges xy and $x'y'$ in H, we obtain another realization of π, and as a result the preceding argument immediately implies that $v_i H \in E(G)$. Thus, each vertex v_i adjacent to any vertex x with $d_H(x) = 1$ is adjacent to every vertex of H with degree one. Let $S = \{v_i \mid v_i \sim x$ for some x with $d_H(x) = 1\}$, and let $s = |S|$.

First, suppose that $S = \emptyset$ and that $x_i y_i, 1 \leq i \leq \ell$ are the (disjoint) edges in H. If $\ell \geq m$, then we can exchange $x_i y_i$ and the edge $v_i v_{i+1}$ for the nonedges xx_i and yy_i. This creates a realization of π in which the vertices of H contain an independent set of size $p + \ell + m$. If $p + \ell + m \geq t$ we are done, so suppose otherwise. Then $k - (p + \ell + m) = \ell \geq n - 1$, which implies that $k \geq 2n - 2$, a contradiction. Hence we may assume that $\ell < m$, which again allows us to exchange edges in H and edges on C to create a realization of π in which H contains an independent set of size $p + 2\ell$. As $k = n + t - 2$ and $m \leq n - 1$, this implies that, in fact, $p + 2\ell = t - 1$ and $m = n - 1$. Now, as above, if every vertex v_i has a neighbor in H, we can construct a realization of G containing a longer cycle, so there is some vertex v_j with no neighbor in H. As $t \leq \left\lceil \frac{2n}{3} \right\rceil$ and $\ell \leq \frac{t - 1}{2}$, we conclude that $\ell \leq n - 3 = m - 2$, so we can use edges in $E(C)$ that are not incident to v_j to
contains a cycle of length \(n \) and create a realization of \(\pi \) in which \(V(H) \cup \{v_j\} \) forms an independent set of size \(t \), as desired.

Thus, we now assume that \(S \neq \emptyset \). Observe that for every \(v_i \in S \), the maximality of \(m \) implies that \(v_{i+2} \) and \(v_{i-2} \) are not adjacent to any vertex of \(V(H) \) with degree one. Additionally, the vertices \(v_{i+1} \) and \(v_{i-1} \) are not adjacent to any vertex \(x \in V(H) \), as we would either have a cycle of length \(m + 1 \) if \(d_H(x) = 1 \), or, if \(d_H(x) = 0 \), we can choose \(yy' \in E(H) \) and replace \(v_{i+1}x \) with \(v_{i+1}y \) and \(v_{i}x \) to obtain a realization in which \(v_1 \cdots v_jyv_{j+1} \cdots v_nv_1 \) is a cycle of length \(m + 1 \) for \(j = i, i - 1 \).

Furthermore, we note that each edge \(v_iv_j \) of the graph induced by \(C - S \), and any edge \(xx' \in E(H) \) can be replaced with the edges \(v_ix \) and \(v_ix' \) to obtain a realization of \(\pi \) with fewer edges in the graph induced by \(V(H) \). Since each edge of the cycle not incident with a vertex of \(S \) in \(C - S \) and \(dist_C(v_i, v_j) \geq 3 \) for any distinct \(v_i \) and \(v_j \) in \(S \), there are at least \(m - 2s \) edges in this graph. If \(m - 2s > t \), then we can eliminate every edge of \(H \) without using an edge incident with \(v_{i+1} \) for some \(v_i \in S \). This gives a realization of \(\pi \) in which \(V(H) \cup \{v_{i+1}\} \) is a collection of at least \(t \) independent vertices. Thus, we can assume that \(m - 2s \leq t \), and by using each of these \(m - 2s \) edges of the cycle to eliminate an edge of \(H \), we conclude that there is a realization of \(\pi \) with an independent set of size \(\ell + p \) with \(m - 2s \). So either \(\pi \to (C_n, K_t) \) or

\[
\ell + p + m - 2s \leq t - 1. \tag{1}
\]

Now, let \(S^+ = \{v_{i+1} \mid v_i \in S\} \), and suppose first that there is some \(v \in S^+ \) and \(z \in V(H) \) such that \(v \sim z \) and \(d_H(z) = 0 \). Then, for any edge \(xy \) in \(H \) we could exchange the edges \(vz \) and \(xy \) for the nonedges to obtain a realization of \(\pi \). This results in \(x \) having consecutive neighbors on \(C \), a contradiction to the maximality of \(m \). We also claim that \(S^+ \) forms an independent set in \(G \). If not, then there are adjacent vertices \(v_{i+1} \) and \(v_{j+1} \) in \(S^+ \), which implies that for any edge \(xy \) in \(H \), \(v_ixyv_jv_{j+1} \cdots v_{i+1}v_{j+1}v_{j+2} \cdots v_i \) is an \((m + 2)\)-cycle in \(G \), a contradiction. Thus, \(S^+ \) along with the \(p \) isolates in \(H \) and one vertex from each edge in \(H \) comprise an independent set in \(G \). Thus, either \(\pi \to (C_n, K_t) \) or

\[
\ell + p + s \leq t - 1. \tag{2}
\]

Summing (1) and (2) gives \(2 \ell + 2p + m - s \leq 2t - 2 \). Now, since \(2\ell + p = |V(H)| = n + t - 2 - m \), we have \((n - s) + p \leq t \). Note that \(s \leq \frac{4n}{3} \leq \frac{4n - 4}{3} \), and hence \(\frac{2n + 1}{3} + p \leq t \), contradicting \(t \leq \left\lceil \frac{2n}{3} \right\rceil \) and completing the proof. \(\square \)

Theorem 4.2. For \(t \geq 3 \) and \(n \geq 4 \) with \(t > \left\lceil \frac{4n}{3} \right\rceil \),

\[
r_{pot}(C_n, K_t) = 2t - 2 + \left\lceil \frac{n}{3} \right\rceil.
\]

Proof. The lower bound stems from Theorem 2.2 and/or consideration of \(\pi(K_{\left\lceil \frac{4n}{3} \right\rceil - 1}) \lor (t - 1)K_2 \), which is unigraphic. To show the reverse inequality, let \(\pi = (d_1, \ldots, d_k) \) be graphic with \(k = 2t - 2 + \left\lceil \frac{4n}{3} \right\rceil \). If no realization of \(\pi \) contains a cycle, then every realization of \(\pi \) is bipartite, and hence has an independent set of size at least \(t \). Thus, we can assume that some realization of \(\pi \) contains a cycle. Obviously, if \(G \) contains a cycle of length \(n \), there is nothing to prove, so we assume that no cycle
in any realization of π has length n. Due to the similarities between this proof and that of Theorem 4.1, we only sketch the following cases, which suffice to complete the proof.

Case 1: Some realization G of π contains a cycle of length $n + 1$.

Let $C = v_1v_2 \cdots v_nv_{n+1}v_1$ be a cycle of length $n + 1$ in G. Just as in our proof of Theorem 4.1, this requires that $d(x) = 0$ for every $x \in V(G) - V(C)$. Then either $v_1 \sim v_3$ and $v_1v_3v_4 \cdots v_{n+1}v_1$ is a cycle of length n, or $V(G) - \{v_2, v_4, \ldots, v_{n+1}\}$ is a set of $k - (n - 1) = 2t - 1 - \left\lfloor \frac{2m}{3} \right\rfloor \geq t$ independent vertices.

Case 2: Some realization G of π contains a cycle $v_1v_2 \cdots v_{n+2}v_1$.

Again, the arguments in Case 2 of Theorem 4.1 imply that $G = C_{n+2} \cup \overline{K_{k-n-2}}$ and since $n \geq 4$, this graph has an independent set of size at least $k - n + 1 \geq t$.

Case 3: Some realization of π has circumference $m > n + 2$.

The proof is identical to the proof of Case 3 of Theorem 4.1.

Case 4: Every realization of π has circumference $m \leq n - 1$.

Let G be a realization of π containing a longest cycle $C = v_1v_2 \cdots v_m$ with $m \leq n - 1$ and suppose that G has the maximum circumference amongst all realizations of π. Let H be the subgraph of G induced by $V(G) - V(C)$ and note that H has order at least $k - (n - 1) \geq t$ so that H contains at least one edge. Following the argumentation in the proof of Theorem 4.1 we conclude that $H = \ell K_2 \cup pK_1$ for some integers p and t. Proceeding in the same manner, we define the set $S = \{v_i \mid v_i x \in E(G) \text{ for some vertex } x \text{ with } \deg_H(x) = 1\}$, and note that $v_i \in S$ implies that none of $v_{i+1}, v_{i+2} \in S$. Thus, the graph $V(C) - S$ has at least $m - 2|S|$ edges and each edge of this graph can be paired with an edge of H. Replacing these edges with two vertex disjoint non-edges in the induced $2K_2$ gives a realization of π with one fewer edge in the graph induced by $V(H)$. Thus, we have some realization of π with an independent set of size at least $\ell + p + m - 2|S|$, so either $\pi \to (C_n, K_t)$ or $\ell + p + m - 2s \leq t - 1$. Since $|V(H)| = 2\ell + p = 2t - 2 + \left\lfloor \frac{2m}{3} \right\rfloor - m$, we must have

$$2(\ell + p + m - 2|S|) \leq 2t - 2$$

Thus, there is no realization of π with an independent set of size at least $\ell + p + m - 2|S|$, so either $\pi \to (C_n, K_t)$ or $\ell + p + m - 2s \leq t - 1$.

An easy case analysis then shows that the left hand side is strictly positive except when $p = 0$, $m = n - 1$, $|S| = \left\lfloor \frac{2m}{3} \right\rfloor$ and $n \equiv 1 \pmod{3}$. However, this in turn requires $k = 2t - 2 + \frac{n+2}{3}$, and $|V(H)| = 2\ell = 2t - 2\frac{n+1}{3}$. As $n \equiv 1 \pmod{3}$, $2n+1$ is odd, a contradiction which completes the proof. \hfill \Box

The techniques developed in the proofs of Theorems 4.1 and 4.2 also allow us to determine $r_{pot}(P_n, K_t)$. In fact, $r_{pot}(P_n, K_t)$ and $r_{pot}(C_n, K_t)$ differ by at most one. Note, however, that $r(P_n, K_t) = (n - 1)(t - 1) + 1$ [14], which is the conjectured value for $r(C_n, K_t)$ for all $n \geq t \geq 3$.

Theorem 4.3. For $n \geq 6$ and $t \geq 3$,
\[r_{pot}(P_n, K_t) = \begin{cases}
 n + t - 2 & t \leq \left\lfloor \frac{2n}{3} \right\rfloor
 2t - 2 + \left\lfloor \frac{4n}{3} \right\rfloor & t > \left\lfloor \frac{2n}{3} \right\rfloor.
\end{cases} \]

Proof. When \(t \leq \left\lfloor \frac{2n}{3} \right\rfloor \), we note that \(r_{pot}(P_n, K_t) \leq r_{pot}(C_n, K_t) = n + t - 2 \), and equality is established via Corollary 2.3 and/or by observing that \(K_{n-1} \cup \overline{K_{t-2}} \) contains neither \(P_n \) nor \(K_t \).

Therefore, we may assume \(t > \left\lfloor \frac{2n}{3} \right\rfloor \). Theorem 2.2 establishes that \(r_{pot}(P_n, K_t) \geq 2t - 2 + \left\lfloor \frac{4n}{3} \right\rfloor \) and if \(n \equiv 0 \mod 3 \), we observe that \(r_{pot}(P_n, K_t) \leq r_{pot}(C_n, K_t) = 2t - 2 + \frac{4}{3} \), establishing the result.

Finally, for \(n \not\equiv 0 \mod 3 \), we note that by Theorem 4.1, every degree sequence \(\pi \) with \(k \geq 2t - 2 + \left\lfloor \frac{4n}{3} \right\rfloor \) terms has a realization \(G \) which contains either a subgraph isomorphic to \(C_{n-2} \) or an independent set of cardinality \(t \). If the latter, \(\pi \to (P_n, K_t) \), and if the former, we note that there are at least \(2t - 2 + \left\lfloor \frac{4n}{3} \right\rfloor - (n - 2) = 2t - \left\lfloor \frac{2n}{3} \right\rfloor \geq t \) vertices in \(V(G) - V(C_n-2) \). Since we are assuming \(\alpha(G) < t \), there is at least one edge \(xy \in E(G) \) with \(x, y \notin V(C_n-2) \). Now, without loss of generality, either \(xy \in E(G) \) and \(G \) contains a subgraph isomorphic to \(P_n \), or we can select any edge \(v_i v_{i+1} \in E(C_{n-2}) \) and exchange the edges \(v_i v_{i+1} \) and \(xy \) with the non-edges \(v_i x \) and \(v_{i+1} y \) to obtain a realization of \(\pi \) which contains a path of order \(n \). \(\square \)

5. Conclusion

Our results in this paper deal only with a “2-color” Ramsey-type parameter for degree sequences; we are also able to define a multicolored version of \(r_{pot} \). Let \(\pi_1, \ldots, \pi_k \) be graphic sequences, with \(\pi_i = (d_1^{(i)}, \ldots, d_n^{(i)}) \) for all \(i \) (they need not be monotone). Then, as defined in [2], \(\pi_1, \ldots, \pi_k \) pack if there exist edge-disjoint graphs \(G_1, \ldots, G_k \), all with vertex set \(\{v_1, \ldots, v_n\} \), such that

\[d_{G_i}(v_j) = d_j^{(i)} \]

for each \(i \), and

\[d_{G_1 \cup \cdots \cup G_k}(v_j) = \sum_{i=1}^n d_j^{(i)}. \]

In traditional graph packing, the vertex sets of the graphs in question may be permuted prior to their embedding into \(K_n \). Note that when packing degree sequences, the ordering of the terms in \(\pi_1, \ldots, \pi_k \) remains fixed.

With this definition in mind, we define \(r_{pot}(G_1, \ldots, G_k) \) to be the smallest integer \(n \) such that for any collection of \(n \)-term graphic sequences \(\pi_1, \ldots, \pi_k \) that sum, termwise, to \(n - 1 \) and pack, there exist edge disjoint graphs \(F_1, \ldots, F_k \) all with vertex set \(\{v_1, \ldots, v_n\} \), such that \(d_{F_i}(v_j) = d_j^{(i)} \) for all \(i, j \) and also that \(F_i \) contains \(G_i \) as a subgraph for some \(i \). As is the case with the two-color version, the multicolor potential-Ramsey number is bounded from above by the classical Ramsey number, but the added challenges inherent in degree sequence packing make the determination of \(r_{pot}(G_1, \ldots, G_k) \) for \(k \geq 3 \) both interesting and significantly more difficult than the \(k = 2 \) case.
REFERENCES

[16] J-H Yin and J-S Li, Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size, Discrete Math. 301 (2005), 218-227.