On the Domination Number
of Products of Graphs: I

M.S. Jacobson* and L.F. Kinch

ABSTRACT

In this paper we consider a problem of Cockayne, to
determine a relationship between the domination number of a
graph product versus the product of the domination numbers.
For some very special cases we show, in fact, that

\[\sigma(G \times H) \succeq \sigma(G) \cdot \sigma(H), \]

where \(\sigma(F) \) is the domination number of the graph \(F \). This paper supports the conjecture that statement (1) is true for all
graphs \(G \) and \(H \).

Introduction. In this paper, we discuss finite undirected simple graphs.
For any undefined terms see [1]. For any graph \(G \), we denote by \(V(G) \) and
\(E(G) \), the vertex and edge set of \(G \) respectively. A subgraph \(H \subseteq G \),
denoted \(H \subseteq G \) is a graph with \(V(H) \subseteq V(G) \) and \(E(H) \subseteq E(G) \). The
product of two graphs, \(G \times H \), is a graph with \(V(G \times H) = V(G) \times V(H) \) and \((g_1, h_1), (g_2, h_2) \in E(G \times H) \) if and only
if either \(g_1 = g_2 \) and \(h_1 h_2 \in E(H) \) or \(g_1 g_2 \in E(G) \) and \(h_1 = h_2 \). A sub-
set \(S \subseteq V(G) \) is a dominating set of \(G \) if for every \(x \in V(G) - S \), there
is at least one vertex \(y \in S \) such that \(xy \in E(G) \). Finally, the domination number of a graph \(G \), denoted \(\sigma(G) \), is the order of the smallest dom-
inating set.

There has been a good deal of research done on \(\sigma(G) \), see [2] and [3].
It is the purpose of this paper to consider one question given by Cockayne
in [2].

* Research supported by a grant from the University of Louisville.
Conjecture. \(\sigma(G \times H) \geq \sigma(G) \cdot \sigma(H) \).

In this paper we present some bounds for the domination number of a graph. We go on to prove the question for a number of classes of graphs; Paths, Cycles and graphs with dominating numbers half their order. We conclude the paper with the determination of \(\sigma(P_m \times P_n) \) for \(m = 2, 3, \) and \(4 \) and all \(n \).

Before proceeding we state a few necessary results. We will employ the following notation: \([x]([x]) \) will denote the smallest (largest) integer greater (less) than or equal to \(x \). The following Theorem was given in [5].

Theorem A. If \(C_n \) is the cycle of order \(n \), then

\[
\sigma(C_n) = \left\lceil \frac{n}{3} \right\rceil.
\]

Also, if \(P_n \) is the path of order \(n \), then

\[
\sigma(P_n) = \left\lceil \frac{n}{3} \right\rceil.
\]

For the next result, we define property (*) as the following:

(*) The vertices of a graph \(G \) can be partitioned into two sets, \(V_1 = \{v_1, v_2, \ldots, v_n\} \) and \(V_2 = \{u_1, u_2, \ldots, u_n\} \) with only a matching between \(V_1 \) and \(V_2 \) (these are the only edges between these vertices) and satisfying \(<V_1> = K_n \) and \(<V_2> \) is connected. The following was proved in [4].

Theorem B. A connected graph \(G \) of order \(2n \) has \(\sigma(G) = n \) if, and only if, either \(G = C_4 \) or \(G \) satisfies (*).

General Bounds. Throughout the remainder of this paper we will refer to the maximum degree of a graph \(G \) as \(\Delta(G) \). The \(G \) will be dropped \((\Delta(G) = \Delta) \) when no confusion will result. We begin by proving the following useful lower bound on \(\sigma(G) \).

Lemma 1. For every graph \(G \) of order \(n \),

\[
\sigma(G) \geq \frac{n}{\Delta + 1}.
\]

Proof. Let \(G \) be a graph of order \(n \) and let \(S \) be a minimum dominating set for \(G \). Then

\[
|S| \cdot \Delta(G) \geq \sum_{v \in V(G) - S} d(v) \geq |V(G) - S| = n - |S|.
\]

Thus with \(\sigma(G) = |S| \), the result follows. \(\Box \)
Corollary 2. If \(G \) is a graph of order \(m \) then
\[
\sigma(C_n \times G) \geq \frac{mn}{\Delta(G)+3}.
\]

\textbf{Proof.} Clearly, \(\Delta(C_n \times G) = \Delta(G) + 2 \). Invoking Lemma 1 gives the result. \(\Box \)

\textbf{Theorem 3.} For graphs \(G \) and \(H \),
\[
\sigma(G \times H) \geq \frac{|V(H)|}{\Delta(H)+1} \cdot \sigma(G).
\]

\textbf{Proof.} Let \(G \) and \(H \) be graphs with order \(m \) and \(n \) respectively. It follows that in \(G \times H \) there are \(n \) canonical disjoint copies of \(G \); label these copies \(G_1, G_2, \ldots, G_n \). Let \(D \) be a minimum dominating set of \(G \times H \) and define \(D_i = G_i \cap D \). Let \(S = \{g_i \in V(G_i) \text{ not dominated by a vertex in } D_i\} \). Clearly, \(|V(G_i) \cap S| \geq \sigma(G) - |D_i| \), for all \(i \), for otherwise there would exist a subset of vertices of \(G \); \(D_i \cup (V(G_i) \cap S) \), of order strictly less than \(\sigma(G) \) which would dominate \(G \). This would be a contradiction. Also, since the vertices in \(S \) must be dominated by vertices in \(D \), it follows that
\[
\Delta(H) \cdot |D| \geq |S| \geq \sum_{i=1}^{n} \sigma(G) - |D_i| + n \cdot \sigma(G) - |D|.
\]

But this implies that
\[
(\Delta(H)+1)|D| \geq n \cdot \sigma(G)
\]

which implies
\[
|D| \geq \frac{n}{\Delta(H)+1} \cdot \sigma(G).
\]

Consequently, \(\sigma(G \times H) \geq \frac{n}{\Delta(H)+1} \cdot \sigma(G) \). \(\Box \)

Note, it also follows for paths.

\textbf{Corollary 4.} \(\sigma(C_{3n} \times G) \geq \sigma(C_{3n}) \cdot \sigma(G) \).

\textbf{Proof.} By Theorem 3 it follows that
\[
\sigma(C_{3n} \times G) \geq \frac{3n}{3} \cdot \sigma(G) = n \cdot \sigma(G).
\]

The result follows since \(\sigma(C_p) = \lfloor \frac{p}{3} \rfloor \), by Theorem A. \(\Box \)
We now are ready to show that Cockayne's conjecture is true for all cycles. Note, it also follows for paths.

Theorem 5. If \(m, n \geq 2 \) then \(\sigma(C_m \times C_n) \geq \sigma(C_m) \cdot \sigma(C_n) \).

Proof. By Lemma 1, \(\sigma(C_m \times C_n) \geq \frac{mn}{5} \). It is a simple exercise to show that \(\frac{mn}{5} \geq \left\lfloor \frac{m}{3} \right\rfloor \left\lfloor \frac{n}{3} \right\rfloor \) for \(m \) and \(n \geq 3 \). Hence \(\sigma(C_m \times C_n) \geq \left\lfloor \frac{m}{3} \right\rfloor \cdot \left\lfloor \frac{n}{3} \right\rfloor = \sigma(C_m) \cdot \sigma(C_n) \). \(\square \)

We conclude this section with another class of graphs for which the conjecture is true.

Theorem 6. If \(G \) is a connected graph of order \(2n \) with \(\sigma(G) = n \) and \(G \neq C_4 \), then for any graph \(H \),

\[\sigma(G \times H) \geq \sigma(G) \cdot \sigma(H). \]

Proof. Let \(G \) and \(H \) be as in the statement of the theorem. By Theorem B, the vertices of \(G \) can be partitioned into two sets \(V_1 = \{v_1, \ldots, v_n\} \) and \(V_2 = \{u_1, \ldots, u_n\} \) such that \(\langle V_1 \rangle = K_n \), \(\langle V_2 \rangle \) is connected, and there is only a matching between \(V_1 \) and \(V_2 \). We assume that the vertices have been labelled so that, for each \(i \), \(v_i u_i \in E(G) \).

Let \(D \) be a minimum dominating set of \(G \times H \). For each \(i \), set \(W_i = \{ x \in V(H) : \langle v_i, x \rangle \in D \text{ or } \langle u_i, x \rangle \in D \} \). We show that \(W_i \) dominates \(H \). Let \(y \in V(H) - W_i \). Since \(u_i \) is the only neighbor of \(v_i \) in \(G \) and since \(\langle v_i, y \rangle \) and \(\langle u_i, y \rangle \) are not in \(D \), there is an \(x \in V(H) \) satisfying \(\langle v_i, x \rangle \in D \) and \(\langle v_i, x \rangle \) is adjacent to \(\langle v_i, y \rangle \) in \(G \times H \). This implies that \(x \in W_i \) and \(x \) is adjacent to \(y \) in \(H \). Thus, \(W_i \) dominates \(H \) and so \(|W_i| \geq \sigma(H) \). Hence

\[\sigma(G \times H) = |D| \geq \left| \bigcup_{i=1}^{n} W_i \right| \geq n \sigma(H) = \sigma(G) \cdot \sigma(H). \square \]

Exact Results. In this section we determine exactly \(\sigma(G \times H) \) for a few special cases.

Theorem 7. \(\sigma(P_2 \times P_n) = \left\lfloor \frac{n+1}{2} \right\rfloor. \)
Proof. Consider $P_2 \times P_n$ as two canonical copies of P_n with vertices labeled x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_n with, for each i, x_i, y_i the only edges between the two paths. First, to show $\sigma(P_2 \times P_n) \geq \lceil \frac{n+1}{2} \rceil$, if n is odd, let D consist of those vertices x_i, y_i where $i = 1 \pmod{4}$ and $j = 3 \pmod{4}$. If n is even, let D consist of the same vertices together with x_n. It is an easy matter to check that in each case D dominates $P_2 \times P_n$ and that $|D| = \lceil \frac{n+1}{2} \rceil$. Thus $\sigma(P_2 \times P_n) \leq |D| = \lceil \frac{n+1}{2} \rceil$.

To show that $\sigma(P_2 \times P_n) \geq \lceil \frac{n+1}{2} \rceil$ we proceed by induction. Clearly, the theorem is true for $n = 1, 2$ and 3. Hence, let $n \geq 3$ be an integer for which $\sigma(P_2 \times P_k) \geq \lceil \frac{k+1}{2} \rceil$ for all $k, 1 \leq k \leq n$, and thus, by the argument above, equality holds for k. Further, suppose that $\sigma(P_2 \times P_{n+1}) < \lceil \frac{n+2}{2} \rceil$. Then $\lceil \frac{n+1}{2} \rceil = \sigma(P_2 \times P_n) \leq \sigma(P_2 \times P_{n+1}) < \lceil \frac{n+2}{2} \rceil$. This implies that n is odd and $\sigma(P_2 \times P_{n+1}) = \lceil \frac{n+1}{2} \rceil$. Let D be a minimum dominating set of $P_2 \times P_{n+1}$.

Suppose first that $x_1 \notin D$. Then by removing x_1 and, if necessary, replacing y_2 by y_3 in D, the resulting set D' would dominate the induced subgraph

$$\langle \{x_3, y_3, x_4, y_4, \ldots, x_{n+1}, y_{n+1}\} \rangle,$$

which is $P_2 \times P_{n-1}$. Thus we would have, since n is odd,

$$\lceil \frac{n}{2} \rceil = \sigma(P_2 \times P_{n-1}) \leq |D'| = \lceil \frac{n+1}{2} \rceil.$$

This contradiction implies $x_1 \notin D$. Similarly, $y_1 \notin D$. Since each vertex must be dominated by D, it must follow that both x_2 and $y_2 \notin D$. We also note that neither x_3 nor y_3 is in D. If, for instance $x_3 \in D$, replacing both x_2 and y_2 by y_1 would give a smaller dominating set for $P_2 \times P_{n+1}$ than the minimum set we chose. Hence the set $D^* = D - \{x_2, y_2\}$ dominates the induced subgraph

$$\langle \{x_4, y_4, x_5, y_5, \ldots, x_{n+1}, y_{n+1}\} \rangle,$$

which is $P_2 \times P_{n-2}$. Thus, we would have
\[\left\lfloor \frac{n-1}{2} \right\rfloor = \sigma(P_2 \times P_{n-2}) \leq |D^n| = \left\lfloor \frac{n+1}{2} \right\rfloor - 2 = \left\lfloor \frac{n-3}{2} \right\rfloor < \left\lfloor \frac{n-1}{2} \right\rfloor, \]

a contradiction. Therefore, it must be the case that

\[\sigma(P_2 \times P_{n+1}) \geq \left\lfloor \frac{n+2}{2} \right\rfloor \]

and the result follows. \(\square \)

Theorem 8. \(\sigma(P_3 \times P_n) = n - \left\lfloor \frac{n-1}{4} \right\rfloor. \)

Proof. Consider \(P_3 \times P_n \) as three canonical copies of \(P_n \) with vertices \(x_1, \ldots, x_n, y_1, \ldots, y_n \) and \(z_1, \ldots, z_n \) and with edges \(x_iy_i \) and \(y_iz_i \) between the copies for \(1 \leq i \leq n \). To show \((P_3 \times P_n) \leq n - \left\lfloor \frac{n-1}{4} \right\rfloor \): if \(n \) is odd, let \(D \) consist of those vertices \(x_i, z_i \) and \(y_j \), where \(i \equiv 3 \pmod{4} \) and \(j \equiv 1 \pmod{4} \). If \(n \) is even, let \(D \) consist of these same vertices together with \(y_n \). It is an easy matter to check that in each case \(D \) dominates \(P_3 \times P_n \) and that \(|D| = n - \left\lfloor \frac{n-1}{4} \right\rfloor. \)

As in the previous result, to show that \(\sigma(P_3 \times P_n) \geq n - \left\lfloor \frac{n-1}{4} \right\rfloor \) we proceed by induction. It is easy to see that

\[\sigma(P_3 \times P_k) \geq k - \left\lfloor \frac{k-1}{4} \right\rfloor \]

for \(k = 1, 2, \ldots, 5 \). So, suppose for some \(k \geq 5 \)

\[\sigma(P_3 \times P_n) \geq n_0 - \left\lfloor \frac{n_0-1}{4} \right\rfloor \]

for each \(n_0 \leq n \), and thus equality follows for each \(n_0 \). Furthermore suppose

\[\sigma(P_3 \times P_{n+1}) < n + 1 - \left\lfloor \frac{n}{4} \right\rfloor. \]

Clearly this would imply that \(\sigma(P_3 \times P_{n+1}) = n - \left\lfloor \frac{n-1}{4} \right\rfloor \) since \(\sigma(P_3 \times P_n) = n - \left\lfloor \frac{n-1}{4} \right\rfloor \). Note for \(n - \left\lfloor \frac{n-1}{4} \right\rfloor < n + 1 - \left\lfloor \frac{n}{4} \right\rfloor \) it must be the case that \(n \equiv 0 \pmod{4} \). Let \(D \) be a minimum dominating set of \((P_3 \times P_{n+1}) \) with \(n - \left\lfloor \frac{n-1}{4} \right\rfloor \) vertices. We consider various cases.

Case 1. Suppose \(D \) contains two or more of the vertices \(x_{n+1}, y_{n+1} \) and \(z_{n+1} \). This would imply that \(n - 1 - \left\lfloor \frac{n-2}{4} \right\rfloor = \sigma(P_3 \times P_{n-1}) \leq n - \left\lfloor \frac{n-1}{4} \right\rfloor - 2 \). But this implies that \(\left\lfloor \frac{n-1}{4} \right\rfloor + 1 \leq \left\lfloor \frac{n-2}{4} \right\rfloor \) which is a contradiction.
Case 2. Suppose D contains none of the vertices x_{n+1}, y_{n+1} and z_{n+1}. Since D is a dominating set it must be the case that x_n, y_n and z_n are all in D. But this would imply that

$$n - 2 - \lfloor \frac{n-3}{4} \rfloor = \sigma(P_3 \times P_{n-2}) \leq n - \lfloor \frac{n-1}{4} \rfloor - 3.$$

This would give us that $1 + \lfloor \frac{n-1}{4} \rfloor \leq \lfloor \frac{n-3}{4} \rfloor$ an obvious contradiction.

Case 3. Exactly one of x_{n+1}, y_{n+1} and z_{n+1} are in D.

Subcase a. Suppose $x_{n+1} \in D$. Clearly, $z_n \in D$ since z_{n+1} must be dominated by a vertex of D. If any of y_n, x_n or $z_{n-1} \not\in D$, then $D - u_1$ would dominate $P_3 \times P_{n+1} - \{x_{n+1}, y_{n+1}, z_{n+1}\}$. This would imply that $\sigma(P_3 \times P_n) < n - \lfloor \frac{n-1}{4} \rfloor$ a contradiction. Thus none of y_n, x_n or z_{n-1} can be in D. If $y_{n-1} \in D$ then $D - x_n \cup \{z_{n+1}\}$ would be a minimum dominating set of $P_3 \times P_n$, but then we would have case 1. So $y_{n-1} \not\in D$. Also if $z_{n-1} \in D$ then $D - z_n \cup \{y_{n+1}\}$ would dominate the graph and again Case 1 results. Thus, since none of x_{n-1}, y_{n-1}, nor $z_{n-1} \in D$ it must be the case that x_{n-2}, and $y_{n-2} \in D$. But this implies that

$$n - 4 - \lfloor \frac{n-5}{4} \rfloor = \sigma(P_3 \times P_{n-4}) \leq n - \lfloor \frac{n-1}{4} \rfloor - 4.$$

This yields $\lfloor \frac{n-1}{4} \rfloor \leq \lfloor \frac{n-5}{4} \rfloor$ a contradiction.

Subcase b. Suppose $y_{n+1} \in D$. If either x_n or $z_n \in D$ then y_{n+1} could be replaced in D by z_{n+1} or x_{n+1} respectively and thus subcase a would result. If $y_n \in D$, then, as in subcase a, $D - y_{n-1}$ would dominate $P_3 \times P_{n+1} - \{x_{n+1}, y_{n+1}, z_{n+1}\}$ which gives a contradiction. Hence neither x_n, y_n nor $z_n \in D$ which implies that x_{n-1} and z_{n-1} are both in D. Consequently,

$$n - 3 - \lfloor \frac{n-4}{4} \rfloor = \sigma(P_3 \times P_{n-3}) \leq n - \lfloor \frac{n-1}{4} \rfloor - 3.$$

This implies $\lfloor \frac{n-1}{4} \rfloor \leq \lfloor \frac{n-4}{4} \rfloor$ which gives $n = 0 \mod 4$ a contradiction. With all cases exhausted, we claim $\sigma(P_3 \times P_{n+1}) \geq n + 1 - \lfloor \frac{n}{4} \rfloor$ and the Theorem follows. □

The solution for P_4 does not work out as nicely. We will prove the following:
Theorem 9. For all \(n \)

\[
\sigma(P_4 \times P_n) = \begin{cases}
 n + 1 & \text{if } n = 1,2,3,4,5,6 \text{ or } 9 \\
 n & \text{otherwise.}
\end{cases}
\]

To prove Theorem 9, we present a number of Lemmas.

Lemma 10. For all \(n \), \(\sigma(P_4 \times P_n) \geq n \).

Proof. Suppose this were not the case. Let \(m \) be the smallest integer for which \(\sigma(P_4 \times P_m) < m \). Let \(D \) be a minimum dominating set for \(G = P_4 \times P_m \). Denote the columns of \(G \) by \(C_1, C_2, \ldots, C_m \) and note that at least one column does not intersect \(D \), since \(|D| < m \). Let \(j \) be the smallest integer for which \(C_j \cap D = \emptyset \). Since each vertex of \(C_j \) must be dominated by a vertex in \(C_{j-1} \) or in \(C_{j+1} \) we have

\[|(C_{j-1} \cup C_{j+1}) \cap D| \geq 4. \]

Let \(F_1 \) be the vertices in \(C_1 \cup C_2 \cup \cdots \cup C_{j-1} \) and \(F_2 \) be the vertices in \(C_{j+1} \cup C_{j+2} \cup \cdots \cup C_m \). Note that \(F_1 \cap D \) dominates \(<F_1> \cong P_4 \times P_{j-1} \) and \(F_2 \cap D \) dominates \(<F_2> \cong P_4 \times P_{m-j} \). Since \(j - 1 < m \) and \(m - j < m \) it follows that \(|F_1 \cap D| \geq j - 1 \) and \(|F_2 \cap D| \geq m - j \), thus, \(m - 1 \geq |D| = |F_1 \cap D| + |F_2 \cap D| \geq (j-1) + (m+j) = m - 1 \). Hence, equality exists throughout and \(|F_1 \cap D| = j - 1 \) and \(|F_2 \cap D| = m - j \).

Now if \(j = 1 \), then \(F_1 \cap D = \emptyset \) and \(|C_2 \cap D| = 4 \). If \(j > 1 \), then \(F_1 \) has \(j - 1 \) columns, each intersecting \(D \) exactly once. So \(|C_{j+1} \cap D| \geq 3 \) and clearly then \(j \neq m \). If \(j = m - 1 \) then

\[|D| = |F_1| + |C_m \cap D| \geq (m - 2) + 3 \]

which is a contradiction. If \(j = m - 2 \) then

\[|D| = |F_1| + |C_{m-1} \cap D| + |C_m \cap C| \geq m - 3 + 3 \geq m \]

again a contradiction. Hence \(j \leq m - 3 \). Note that \(E = (C_{j+2} \cup \cdots \cup C_m) \cap D \) dominates \(<C_{j+3} \cup \cdots \cup C_m> \).

Since \(m - (j+2) < m \), we have

\[|E| \geq \sigma(P_4 \times P_{m-j-2}) \geq m - j - 2. \]

Thus,

\[|D| = |F_1| + |C_{j+1} \cap D| + |E| \geq (j-1) + 3 + m - j - 2 = m. \]

This is a contradiction, and the result follows. \(\square \)
Lemma 11. If \(n = 4, 7, 8 \) or if \(n \geq 10 \) then
\[
\sigma(P_4 \times P_n) \leq n.
\]

Proof. To show that \(\sigma(P_4 \times P_n) \leq n \) in these cases, we will display appropriate dominating sets. For convenience we label the vertices of the four disjoint \(P_n' \)’s:
\[
w_1, w_2, \ldots, w_n, x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \text{ and } z_1, z_2, \ldots, z_n
\]
respectively. Also, let \(w_i, x_i, y_i, z_i \in E(G) \).

First, suppose \(n = 4 + 3k \) for some integer \(k \geq 0 \). Let \(D_1 = \{w_3, x_1, y_4, z_2\}, \quad D_2 = \{x_{6t+1}, x_{6t}, w_{6t}: t = 0, \ldots, \left\lfloor \frac{k}{2} \right\rfloor \} \) and \(D_3 = \{w_{6t+3}, y_{6t+4}, z_{6t+2}: t = 0, \ldots, \left\lfloor \frac{k}{2} \right\rfloor \} \). Set \(D = D_1 \cup D_2 \cup D_3 \). It is easy to show that \(D \) is a dominating set of \(P_4 \times P_n \) of order \(n \).

Now, suppose \(n = 8 + 3k \) for some integer \(k \geq 0 \). Let \(D_1 = \{w_3, x_1, y_4, z_2, w_7, x_5, y_8, z_6\}, \quad D_2 = \{x_{6t+4}, x_{6t+5}, w_{6t+3}: t = 0, 1, \ldots, \left\lfloor \frac{k}{2} \right\rfloor \} \) and \(D_3 = \{w_{6t+7}, y_{6t+8}, x_{6t+6}: t = 0, 1, \ldots, \left\lfloor \frac{k}{2} \right\rfloor \} \). Set \(D = D_1 \cup D_2 \cup D_3 \). Again, it can be shown that \(D \) is a dominating set of \(P_4 \times P_n \) of order \(n \).

Finally, suppose \(n = 12 + 3k \) for some integer \(k \geq 0 \). Let \(D_1 = \{w_3, w_7, x_{11}, x_3, x_5, y_4, y_8, y_{12}, z_2, x_6, x_{10}\}, \quad D_2 = \{x_{6t+8}, x_{6t+9}, w_{6t+7}: t = 0, 1, \ldots, \left\lfloor \frac{k}{2} \right\rfloor \} \) and \(D_3 = \{w_{6t+11}, y_{6t+12}, x_{6t+10}: t = 0, 1, \ldots, \left\lfloor \frac{k}{2} \right\rfloor \} \). Set \(D = D_1 \cup D_2 \cup D_3 \). As above, \(D \) is a dominating set of \(P_4 \times P_n \) of order \(n \). \(\square \)

These three constructions show that \((P_4 \times P_n) \leq n \) for all \(n \) except \(1, 2, 3, 5, 6 \) or \(9 \).

We are now prepared to complete the proof of Theorem 9.

Proof of Theorem 9. Clearly, Lemmas 10 and 11 give \((P_4 \times P_n) = n \) for \(n = 4, 7, 8 \) and \(n \geq 10 \). From Theorem A, Theorem 7 and Theorem 8 we get \(\sigma(P_4 \times P_n) = n + 1 \) for \(n = 1, 2 \) or \(3 \). It only remains to show that \(\sigma(P_4 \times P_n) = n + 1 \) for \(n = 5, 6 \) and \(9 \). For the remainder of this proof we will label the vertices of the four disjoint \(P_n \)’s as \(w_1, w_2, \ldots, w_n, x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \) and \(z_1, z_2, \ldots, z_n \).

First, we show that \(\sigma(P_4 \times P_5) = 6 \). Let \(D = \{w_1, w_5, x_3, y_3, z_1, z_5\} \). Clearly, \(D \) is a dominating set of \(P_4 \times P_5 \), and thus \(\sigma(P_4 \times P_5) \leq 6 \). Suppose \(D \) is a minimum dominating of \(P_4 \times P_5 \). If \(\{w_i \cap D = \emptyset \) it
must be the case that \(|\{z_i\} \cap D| = 5\). But this would imply that \(|D| > 5\). Hence, we may suppose that \(|\{w_i\} \cap D| \geq 1\), symmetrically \(|\{x_i\} \cap D| \geq 1\). Also, if \(|\{w_i\} \cap D| = |\{z_i\} \cap D| = 1\), this implies that \(|\{z_i\} \cap D|, |\{y_i\} \cap D| \geq 2\) which gives \(|D| \geq 6\). Thus, suppose, without loss of generality, that \(|\{w_i\} \cap D| \geq 2\). Also, it follows that one of \(|\{y_i\}| \cap D| or \(|\{z_i\} \cap D| \geq 2\). So, if \(|D| = 5\) one of \(|\{y_i\} \cap D| or \(|\{z_i\} \cap D| = \emptyset\), say \(|\{x_i\} \cap D| \geq 5\) which implies \(|D| \geq 6\). Hence \(\sigma(P_4 \times P_6) \geq 6\) and thus \((P_4 \times P_3) = 6\).

Next, consider \((P_4 \times P_6)\). Let \(D = \{w_2, w_3, z_4, y_1, y_5, x_3, x_6\}\). Clearly, \(D\) is a dominating set of \(P_4 \times P_6\), hence \(\sigma(P_4 \times P_6) \leq 7\). Let \(D\) be a minimum dominating set of \(P_4 \times P_6\). If \(|D| = 6\) then, since \(\sigma(P_4 \times P_3) = 4\) it must be the case that \(|\{w_1, w_2, x_1, w_2, y_2, y_2, z_1, z_2\} \cap D| \leq 2\). Symmetrically, \(|\{w_5, w_6, x_5, x_6, y_5, y_6, z_5, z_6\} \cap D| \leq 2\). Hence, we may suppose that \(D = D\) and thus \(D \notin D\). This implies that \(D \notin D\). But then \(|D| > 6\). Hence, \(x_6 \notin D\), which implies that \(x_6 \notin D\). Consequently, it follows that \(|D| > 6\) and thus \(\sigma(P_4 \times P_6) = 7\).

Finally, consider \(P_4 \times P_9\). Let \(D = \{w_1, w_2, w_3, x_4, z_9, y_1, y_7, z_3, z_5, z_6\}\). Clearly, \(D\) is a dominating set of \(P_4 \times P_9\), hence \(\sigma(P_4 \times P_9) \leq 10\). Let \(D\) be a minimum dominating set. If \(|D| = 9\), then since \(\sigma(P_4 \times P_6) = 7\) it follows that \(|\{w_1, w_2, x_1, w_2, y_2, y_2, w_2, z_2\} \cap D| \leq 2\). Symmetrically, \(|\{w_8, w_9, w_9, z_8, w_9, z_9, z_9, z_9\} \cap D| \leq 2\). Hence, we may assume \(y_1 \notin D\) thus \(z_2 \notin D\) and \(z_3 \notin D\). Since \(\sigma(P_4 \times P_9) = 6\), \(z_3 \notin D\), thus \(z_4 \notin D\). A symmetric argument shows that four vertices from \(\{w_i, x_i, y_i, z_i; i = 6, 7, 8, 9\}\) must be in \(D\), with \(z_6\) or \(y_6\) the one vertex from \(\{w_6, x_6, y_6, z_6\}\). Clearly, with these 8 vertices in \(D\) it is impossible for \(|D| = 9\). Thus \(\sigma(P_4 \times P_9) \geq 10\), and the theorem follows. \(\square\)

While Theorems 7, 8, and 9 might lead one to conjecture that, for all \(m\) and \(n\), \(\sigma(P_m \times P_n)\) is approximately \(\frac{mn}{4}\), this is not the case as can be seen by the following result. It also indicates the difficulty in finding \(\sigma(P_m \times P_n)\) for all \(m\) and \(n\).

Theorem 12. \(\lim_{m,n \to \infty} \frac{\sigma(P_m \times P_n)}{mn} = \frac{1}{5}\).
Proof. Label the vertices of $P_m \times P_n$ as x_{ij} for $1 \leq i \leq m$, $1 \leq j \leq n$. Consider the vertices x_{ij} where $j = 2i \pmod{5}$. There are no more than $\frac{mn}{5}$ of these vertices, and they dominate all of $P_m \times P_n$ except for approximately $\frac{1}{5}$ of those vertices of the form $x_{ij}, x_{mj}, x_{il}, x_{in}$. It is easier, and sufficient, to show that no more than $\frac{2}{5} (m + n) + 2$ vertices in $P_m \times P_n$ are not dominated by this set. Thus, using Lemma 1 for the lower inequality,

$$\frac{1}{5} \leq \frac{\sigma(P_m \times P_n)}{mn} \leq \frac{1}{mn} \left(\frac{mn}{5} + \frac{2}{5} (m + n) + 2 \right).$$

Since the expression on the right approaches $\frac{1}{5}$ for large m and n, the result follows. \[\Box \]

Conclusions and Questions. There are a great deal of tractable questions related to this conjecture. One posed in [3], is to characterize the graphs G and H for which $\sigma(G \times H) = \sigma(G) \cdot \sigma(H)$. The obvious question here is to determine for all m and n, $\sigma(P_m \times P_n)$. In [6], bounds are determined for $\sigma(P_m \times C_n)$, and thus for $\sigma(P_m \times P_n)$, by transforming the problem into an integer programming problem. Finally, there is a problem of determining $\sigma(G \times H)$ precisely for other classes of graphs.
References.

Department of Mathematics
University of Louisville
Louisville, KY 40292
U.S.A.