Introduction to Vector Fields
Calculus 3 – Section 14.1

• Definition: Vector Field in Two Dimensions
Let f and g be defined on a region $R \subset \mathbb{R}^2$. A vector field in \mathbb{R}^2 is a function \mathbf{F} that assigns each point in R a vector $(f(x, y), g(x, y))$. That is

$$\mathbf{F}(x, y) = (f(x, y), g(x, y))$$

A vector field $\mathbf{F} = (f, g)$ is continuous or differentiable on a region $R \subset \mathbb{R}^2$ if f and g are continuous or differentiable on R, respectively.

• Example 1: Let $\mathbf{F}(x, y) = (x, -y)$. Plot a sketch of the vector field on the domain $(x, y) \in [-2, 2] \times [-2, 2]$.

• Example 2: Let $\mathbf{F}(x, y) = (-y, x)$. Plot a sketch of the vector field on the domain $(x, y) \in [-2, 2] \times [-2, 2]$.

• Example 3: Let $\mathbf{F}(x, y) = (\sin(x), \sin(y))$. Plot a sketch of the vector field on the domain $(x, y) \in [-\pi, \pi] \times [-\pi, \pi]$.

1
Definition: Let \(\mathbf{r} = (x, y) \). A vector field of the form \(\mathbf{F}(x, y) = f(x, y)\mathbf{r} \), where \(f \) is a scalar-valued function, is a **radial vector field**. One particular type of radial vector field is

\[
\mathbf{F}(x, y) = \frac{(x, y)}{|\mathbf{r}|^p}
\]

where \(p \) is a real number.

Notice that \(|\mathbf{F}| = 1/|\mathbf{r}|^{p-1} \) at each point except the origin.

Example 4: Sketch the vector field for \(\mathbf{F}(x, y) = -\mathbf{r}/|\mathbf{r}|^p \) with \(p = 3 \). (This is an example of the inverse square law for gravitational fields)

Definition: A vector field in \(\mathbb{R}^3 \) is a vector function of the form

\[
\mathbf{F}(x, y, z) = (f(x, y, z), g(x, y, z), h(x, y, z))
\]

Example 5: Try to sketch the 3D vector field \(\mathbf{F}(x, y, z) = (x, y, z) \) on the domain \((x, y, z) \in [0, 1] \times [0, 1] \times [0, 1]\)
• **Definition:** Let \(\varphi \) be a differentiable scalar valued function (in \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \)), and define \(\mathbf{F} = \nabla \varphi \). This is called a **gradient field** or a **potential field**. The function \(\varphi \) is often called the **potential function**.

 * In \(\mathbb{R}^2 \), \(\mathbf{F} \) points in a direction that is ______________ to the level curves of \(\varphi \).
 * In \(\mathbb{R}^3 \), \(\mathbf{F} \) points in a direction that is ______________ to the ______________ of \(\varphi \).

• **Definition:** The level curves of a potential function are called **equipotential curves** (curves on which the potential is constant).

• **Definition:** A curve that is everywhere orthogonal to the equipotential curves is called a **streamline**

 * Streamlines are also called **flow lines** and follow the direction of the gradient field.

• **Example 6:** Plot several level curves, streamlines, and a potential field for the potential function \(\varphi = x^2 + y^2 \) on \([-2, 2] \times [-2, 2]\).

 ![Diagram](image)

• **Example 7:** Plot several level curves, streamlines, and a potential field for the potential function \(\varphi = \sin(x) \sin(y) \) on \([-\pi, \pi] \times [-\pi, \pi]\).

 ![Diagram](image)